Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

1 2

3 4

5

6

7

8 9

10

11

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy

ECU HW and SW Configuration

Compatibility with other Diesel FIEs

Project Main Targets

Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation & Market Trends

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy ECU HW and SW Configuration

Compatibility with other Diesel FIEs

Project Main Targets

Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

5

6

10

1. Motivation & Market Trends

World under Fuel Alternative Pressure!

Diesel Systems

DS/PJ-DF | 10/08/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

1. Motivation & Market Trends

Market	Drivers Enablers	Alternatives
Developed Countries (USA, EU, Japan)	CO2 reduction Emissions	 →Hybrid →Electric →Hydrogen →Natural Gas
Emerging markets	Costs (operational costs reduction and low taxation)	 →Bio-diesel →Ethanol →Natural Gas

Biofuels and Natural Gas are economically feasible and available solutions for several markets.

Diesel Systems

DS/PJ-DF | 10/08/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

2 3

4

5

6

10

11

Bosch CNG Experience

Diesel-Gas System Concept

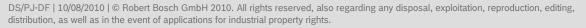
Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy ECU HW and SW Configuration

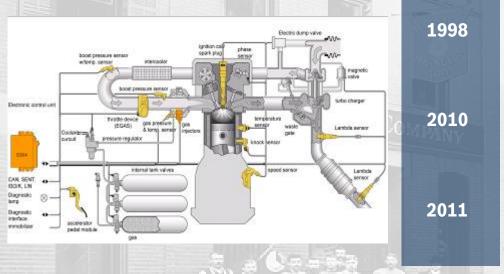
Compatibility with other Diesel FIEs

Project Main Targets


Economical Feasibility Study

Conclusions

Dual-fuel Technology


Diesel Systems

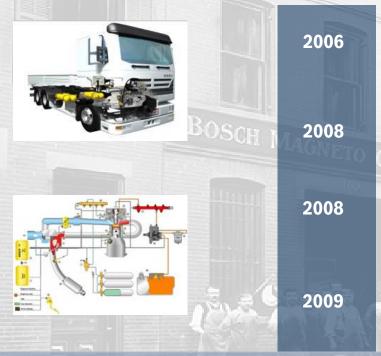
2. Bosch CNG Experience

CNG Otto System

1st Spark ignited CNG engine with Bosch system launched in the EU market

4 new applications to be launched in the EU, India and China markets

4 new applications to be launched in the Indian and Japanese markets


The development of the CNG spark ignited engine injection & ignition systems allowed Bosch to improve its product portfolio providing reliable components with state of the art technology to the market

Diesel Systems

2. Bosch CNG Experience

Dual-Fuel System

Start researching the Dual-Fuel technology with mechanical Diesel injection systems using CNG

First emissions homologation in Brazil of a Dual-Fuel Diesel / CNG powered engine

Start of research with electronically controlled Diesel injection systems

Dual-Fuel system development for applications with Natural Gas, Biomethane and Ethanol for original vehicles

Robert Bosch, worldwide leader in development and application of the Diesel technology, is dedicating its knowledge and experience to the development of a Dual-Fuel system, using the state of the art technology in components and software.

Diesel Systems

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

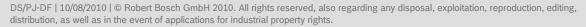
Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy ECU HW and SW Configuration Compatibility with other Diesel FIEs Project Main Targets


Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

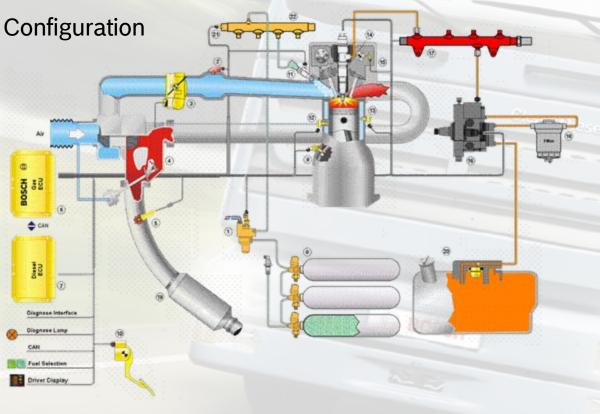
6

10


11

3. Diesel-Gas System Concept

Dual-Fuel	Existent Diesel engines, adapted with a second injection system to manage the NG fuel injection and the air control. The basic configuration of the original Diesel engine remains unchanged. Ignition by Diesel injection.
Operational Modes	Possible to operate either in original Diesel Mode or in Diesel-NG Mode, with significant substitution of Diesel by the Natural Gas.
Alternative fuels	System components and software compatible with: Natural Gas (CNG & LNG) and Biomethane.
Other features	Knock control strategy, diagnosis and monitoring function in Diesel-NG mode, closed loop strategy.

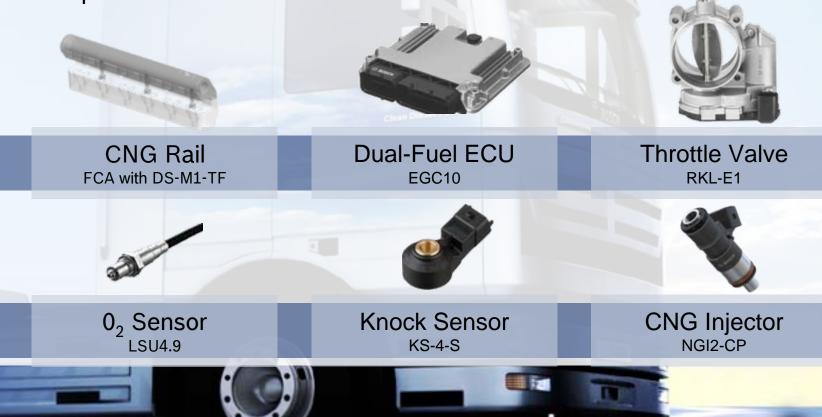

Diesel-Gas integrates the high performance of diesel engines with the fuel flexibility.

Diesel Systems

3. Diesel-Gas System Concept

01 - CNG pressure regulator

- 02 Boost pressure & temperature sensor
- 03 Throttle valve
- 04 Boost actuator
- 05 Lambda sensor
- 06 CNG ECU
- 07 Diesel ECU
- 08 CNG storage tank
- 09 Engine speed sensor
- 10 Accelerator pedal
- 11 CNG injector
- 12 Knock sensor
- 13 Coolant temperature sensor
- 14 Diesel injector
- 15 Phase sensor
- 16 High pressure pump
- 17 Diesel common rail
- 18 Fuel filter
- **19 Oxidation catalyst**
- 20 Diesel tank
- 21 CNG pressure &
 - temperature sensor
- 22 CNG rail



Diesel Systems

10

3. Diesel-Gas System Concept

Components

Diesel Systems

11

3. Diesel-Gas System Concept

Benefits to the customers

Fuel cost reduction	Maximize substitution rate of diesel by Natural Gas or Biomethane	
Emissions compliance	Keeps same emissions level of engine on Diesel-only mode with enhanced particulate material, NOx and CO_2 emissions	
Fuel flexibility	Allows driver to switch between Diesel-NG and Diesel-only modes with the same performance	
Maintenance and lifetime	Reliability and tradition of Diesel engines	
Affordable cost	Estimated ~10% of increase in the vehicle acquisition costs	

Diesel-Gas keeps original integrity of the Diesel engines providing the same performance and fuel consumption efficiency still benefiting of high scale production

Diesel Systems

12

Clean. Efficient. Diesel!

We shape the future of diesel.

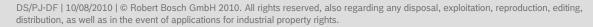
Motivation

Bosch CNG Experience

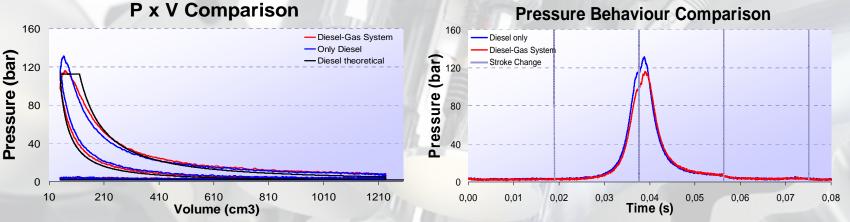
Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench


Emissions Approach & Strategy ECU HW and SW Configuration Compatibility with other Diesel FIEs Project Main Targets Economical Feasibility Study

Conclusions


Dual-fuel Technology

Diesel Systems

4. Combustion Phenomena

Engine test condition: 1600rpm, 100% load, 90% substitution rate

- Diesel-gas P X V curve is closer to the Diesel theoretical curve compared to diesel only
- P X V diagram shows equivalent area in the diesel-gas combustion process compared to diesel only, but with lower upper limit pressure and wider shape due to lower pressure decreasing rate
- · Diesel-gas combustion behavior remains close to the adiabatic cycle due to CH4 low flame speed and retarded diesel injection timing
- Cycles' losses are very similar not being possible to notice differences
- Combustion peak pressure in diesel-gas mode lower than in diesel only mode

Upper limit pressures in diesel-gas mode trends to generate less mechanical stress in the engine parts

Diesel Systems

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

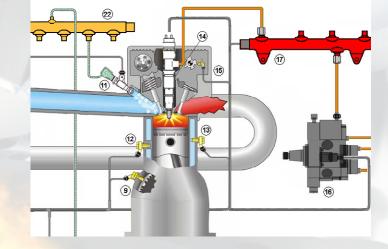
Emissions Approach & Strategy ECU HW and SW Configuration Compatibility with other Diesel FIEs Project Main Targets Economical Feasibility Study

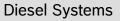
Conclusions

Dual-fuel Technology

Diesel Systems

5. Engine Results in Test Bench


Research with a Diesel prototype EUIV engine with EGR


Calibration parameters:

- Natural gas feed pressure ~ 9bar
- Multipoint injection (2 injectors / cylinder)
- Steady-state calibration on test cell
- → Brazilian field Diesel

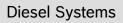
Engine data:

- Diesel engine with CRSN
- → Power: 160 kW @ 2200 rpm
- → 6 cylinder, 7.2 L
- EGR and electronic turbo control

16

5. Engine Results in Test Bench

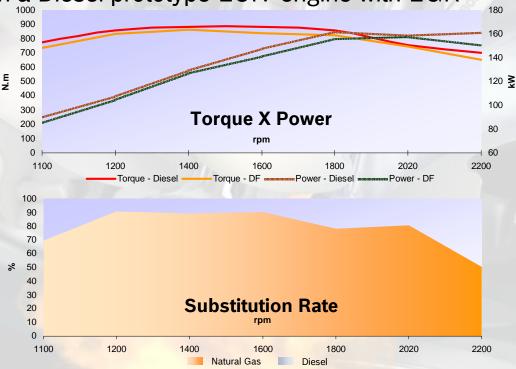
Research with a Diesel prototype EUIV engine with EGR


- Calibration targets: maximize the substitution ratio and substitution efficiency of dual-fuel Diesel-Gas combustion compared to original Diesel
- Success factors: stable combustion; same engine performance; >85% average diesel substitution rate in steady-state condition; no undesirable side-effects

Sontrolled parameters:

- Diesel injection timing
- Diesel injection quantity and pressure
- Natural gas injection timing
- Natural gas injection quantity
- Air flow

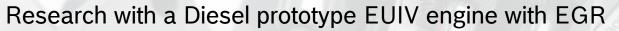
Restrictions:

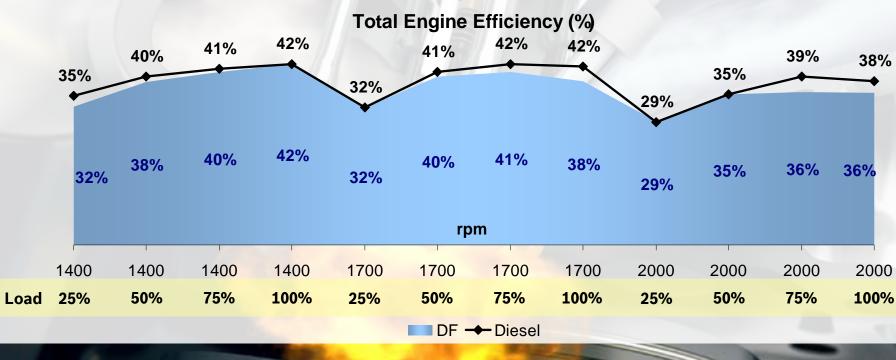

- Knock occurrence measurement through combustion pressure behavior and knock sensor signal
- Out of scope: dynamic calibration

5. Engine Results in Test Bench

Research with a Diesel prototype EUIV engine with EGR

Same original Diesel engine performance achieved on dual-fuel mode

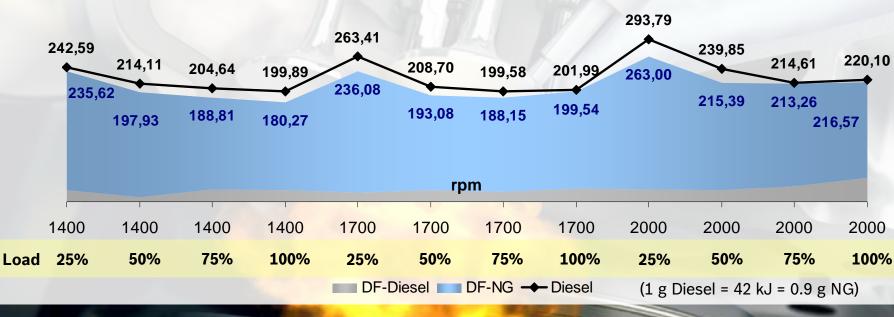

Diesel Systems


18

5. Engine Results in Test Bench

Efficiency = Engine power / Fuel heat content

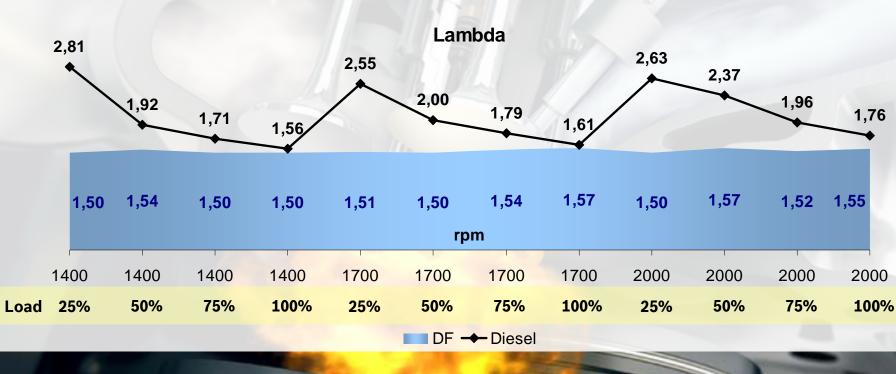
Diesel Systems


19

5. Engine Results in Test Bench

Research with a Diesel prototype EUIV engine with EGR

Fuel Consumption (g/kW.h)

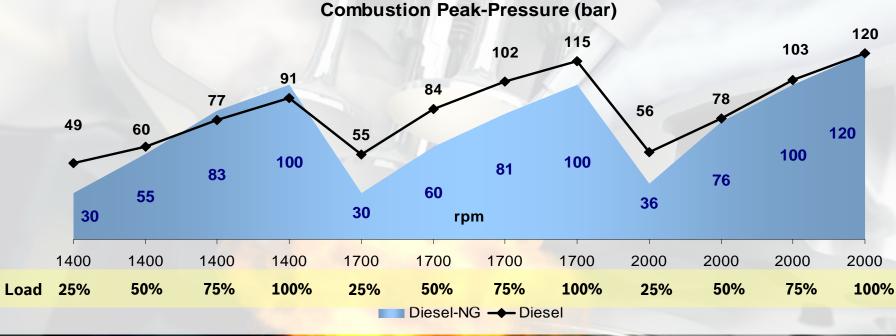

Diesel Systems

20

5. Engine Results in Test Bench

Research with a Diesel prototype EUIV engine with EGR

→ Lambda → experiments show lambda close of 1,55 for best combustion efficiency


Diesel Systems

21

5. Engine Results in Test Bench

Research with a Diesel prototype EUIV engine with EGR

Diesel Systems

22

Clean. Efficient. Diesel!

We shape the future of diesel.

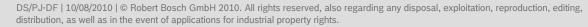
Motivation

Bosch CNG Experience

Diesel-Gas System Concept

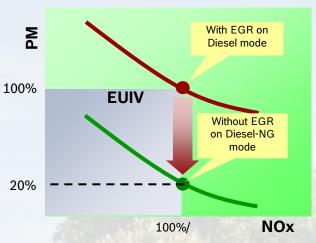
Combustion Phenomena

Engine Results in Test Bench


Emissions Approach & Strategy ECU HW and SW Configuration Compatibility with other Diesel FIEs Project Main Targets Economical Feasibility Study

Conclusions

Dual-fuel Technology


Diesel Systems

6. Emissions Approach and Strategy

NOx & PM

• Current measurements show EGT may not be necessary for some EUIV engines on dual-fuel mode

• PC and LD EUIV applications may not need DPF on dual-fuel mode

• Little modifications necessary to convert EUIV engine in EUV. Improved EGT systems

 Potential to achieve EUV without EGT on dual-fuel mode depending on calibration strategy and engine HW

- Dual-Fuel EUV worst case -> less complex EGT to keep emissions on Dual-Fuel mode
 - SCR -> less urea injection
 - EGR -> less recirculation rate (may require turbocharger matching in addition)
- EUVI engines -> potential to achieve emissions using SCR and disabling EGR on Dual-Fuel mode
 - DPF not necessary
 - SCR/EGR less complex

Diesel Systems

24

BOSCH

6. Emissions Approach and Strategy

- CH4 and CO expected to increase above emissions limits
- Oxidation catalyst will be necessary
- High precious metal (Platinum) charge necessary to convert CH4. Other precious metals charge may be not necessary (i.e. expensive 3-way catalyst not applicable)

- CH4 conversion to start at 300°C -> significant conversion at 400°C
- Close coupled high temperature positioning of the oxidation catalyst necessary
- Conversion efficiency expected to reach 95%
- Oxidation catalyst will reach the light-off temperature earlier in dual-fuel systems due to the prior conversion of the NMHC
- HC oxidation helps reducing PM due to association between sulfates and HC
 - Oxidation catalyst necessary for EUIII up to EUVI applications
 - Platinum higher charge and optimum catalyst positioning to convert CH4

Diesel Systems

25

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

5

6

7

10

11

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy

Dual-Fuel HW/SW Strategy and Features Compatibility with other Diesel FIEs Project Main Targets

Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

7. Dual-Fuel HW/SW Strategy and Features

ECU software and hardware features

Main sensors are common for both ECU's	Economical
Software compatible to EOBD	Standardised Software for all markets
Gas leak detection function	Meets high safety standards
Automatic selection of fuel mode	Benefit of best of both the fuels
Limp home in 100% Diesel mode	Advantage of not loosing efficiency
CNG quality adaptation by SW function	Optimum operation everywhere

Diesel Systems

28

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

5

6

8

10

11

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy Dual-Fuel HW/SW Strategy and Features

Compatibility with non CRS Diesel FIEs

Project Main Targets

Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

BOSCH

8. Compatibility with non CRS Diesel FIEsch

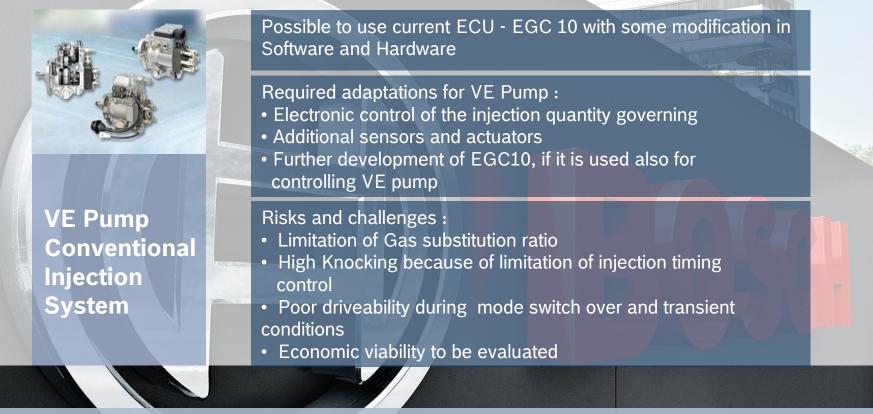
In-line mechanical Pumps

In-line Pump Conventional Injection System Possible to use current ECU - EGC 10 with some modification in Software and Hardware

- Required adaptations for A and P Pump:
- Electronic control of the injection quantity governing (i.e. by using a electronic rack stop switch LDA controlled by ECU)
- Additional sensors and actuators
- Further development of EGC10, if it is used also for controlling A and P pump

Risks and challenges

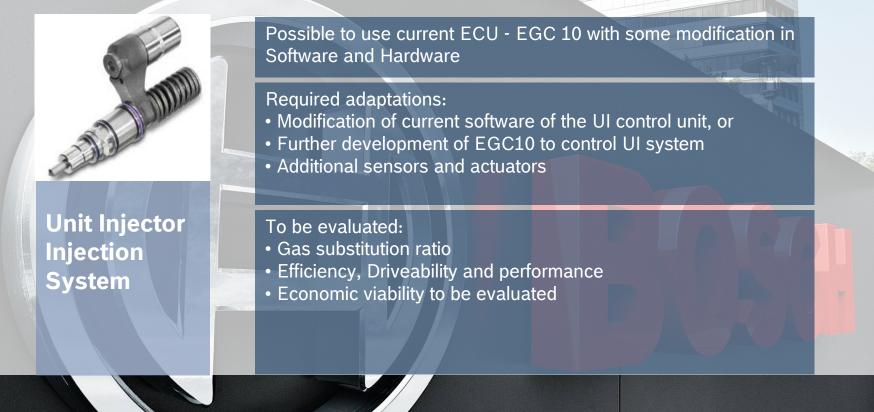
- Limitation of Gas substitution ratio
- High Knocking because of limitation of injection timing control
- Poor driveability during mode switch over and transient conditions
- Economic viability because of low substitution ratio


Probability of the need of the after-treatment is very high for Euro IV and onwards

Diesel Systems

8. Compatibility with non CRS Diesel FIEsch

VE mechanical Pumps

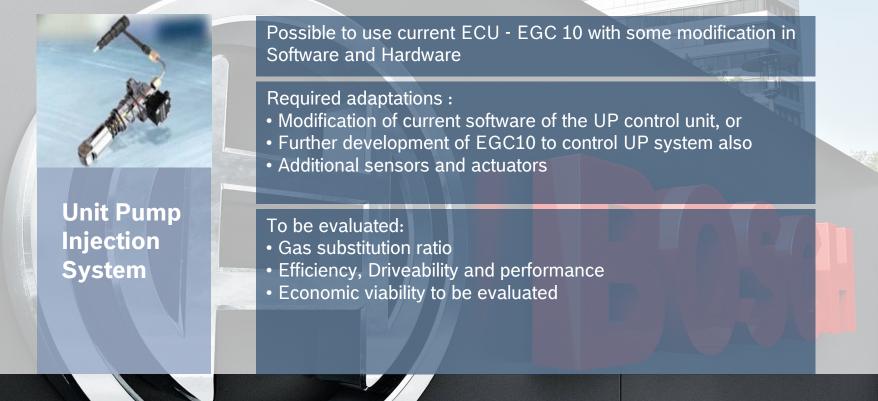

Probability of the need of the after-treatment is very high for Euro IV and onwards

Diesel Systems

31

8. Compatibility with non CRS Diesel FIEsen

Need of the after-treatment for Euro IV and onwards to be studied


Diesel Systems

32

DS/PJ-DF | 10/08/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

8. Compatibility with non CRS Diesel FIEsch

Need of the after-treatment for Euro IV and onwards to be studied

Diesel Systems

33

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

5

6

9

10

11

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

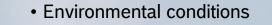
Emissions Approach & Strategy
Dual-Fuel HW/SW Strategy and Features

Compatibility with other Diesel FIEs

Diesel-Gas Project Main Targets

Economical Feasibility Study

Conclusions


Dual-fuel Technology

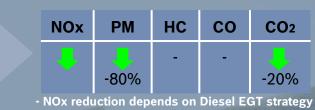
Diesel Systems

9. Diesel-Gas Project Main Targets

- Gas quality
- Vehicle configuration
- Duty-cycle

Performance & drivability

Diesel original performance


Target 85%

	Emissions
Y	enhancement

Average

substitution rate

- Performance requirement
- Environmental conditions
- Aftertreatment configuration

Diesel Systems

35

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

5

6

10

11

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy Dual-Fuel HW/SW Strategy and Features Compatibility with other Diesel FIEs

Diesel-Gas Project Main Targets

Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

BOSCH

10. Economical Feasibility Study

Brazilian Case: Urban Buses

Substitution rate	75%
Diesel/NG price relationship	55% (Diesel at 1,72BRL*)
Vehicle acquisition cost	10% add-on to original Diesel vehicle
Vehicle maintenance costs	~original Diesel vehicle
Specific consumption	Worst case = original Diesel vehicle
Mileage/day	~350km/day
Vehicle resale	~70% depreciation during 7 years

* Reference to ANP fuel prices dated from Aug. 27th, 2010 - http://www.anp.gov.br/preco/prc/Resumo Semanal Index.asp

- Dual-Fuel Diesel-Gas allows transp. companies to end up a period of 7 years with very positive cash-flow considering possibility to resell the vehicle
- ROI expected to not exceed 1,5 years
- Dual-fuel Diesel-Gas fits market economic requirements

Diesel Systems

Clean. Efficient. Diesel!

We shape the future of diesel.

Motivation

5

6

10

11

Bosch CNG Experience

Diesel-Gas System Concept

Combustion Phenomena

Engine Results in Test Bench

Emissions Approach & Strategy Dual-Fuel HW/SW Strategy and Features Compatibility with other Diesel FIEs

Diesel-Gas Project Main Targets

Economical Feasibility Study

Conclusions

Dual-fuel Technology

Diesel Systems

BOSCH

11. Conclusions

- Alternative fuels for Diesel engines are demanded in several markets due to political, economical and environmental aspects.
- In most markets transportation companies need confidence to acquire alternative fuels powered vehicles where:
 - Flexibility is important
 - Shall keep original Diesel engine operation characteristics unchanged
 - Shall have feasible vehicles acquisition and operational costs
 - Vehicle resale market is mandatory for companies operational cash-flow
- → Alternative fuels may represent the most prominent emissions reduction factor worldwide.
- → Significant CO₂ reduction is also mandatory worldwide.
- If flexibility is not necessary (Diesel mode only for "limp-home" function) less complex aftertreatment systems would be possible due to engine emissions trade-off curves improvement by substituting Diesel per alternative fuels (i.e. DPF not necessary and SCR or EGR calibration to reduce lower level of NOx than the Diesel original engines).

Diesel Systems

40

We shape the future of Diesel

Thank you!

Leonardo.vecchi2@br.bosch.com

Diesel Systems

41

